Python?seaborn?barplot畫圖案例

    目錄

    默認barplot

    import seaborn as snsimport matplotlib.pyplot as plt import numpy as np sns.set_theme(style="whitegrid")df = sns.load_dataset("tips")#默認畫條形圖sns.barplot(x="day",y="total_bill",data=df)plt.show()#計算平均值看是否和條形圖得高度一致print(df.groupby("day").agg({"total_bill":[np.mean]}))print(df.groupby("day").agg({"total_bill":[np.std]}))# 注意這個地方error bar顯示并不是標準差

         total_bill           meandayThur  17.682742Fri   17.151579Sat   20.441379Sun   21.410000     total_bill            stddayThur   7.886170Fri    8.302660Sat    9.480419Sun    8.832122

    使用案例

    # import librariesimport seaborn as snsimport numpy as npimport matplotlib.pyplot as plt# load datasettips = sns.load_dataset("tips")# Set the figure sizeplt.figure(figsize=(14, 8))# plot a bar chartax = sns.barplot(x="day", y="total_bill", data=tips, estimator=np.mean, ci=85, capsize=.2, color='lightblue')

    修改capsize

    ax=sns.barplot(x="day",y="total_bill",data=df,capsize=1.0)plt.show()

    顯示error bar得值

    import seaborn as snsimport matplotlib.pyplot as plt sns.set_theme(style="whitegrid")df = sns.load_dataset("tips")#默認畫條形圖ax=sns.barplot(x="day",y="total_bill",data=df)plt.show()for p in ax.lines:    width = p.get_linewidth()    xy = p.get_xydata() # 顯示error bar得值    print(xy)    print(width)    print(p)

    [[ 0.         15.85041935] [ 0.         19.64465726]]2.7Line2D(_line0)[[ 1.         13.93096053] [ 1.         21.38463158]]2.7Line2D(_line1)[[ 2.         18.57236207] [ 2.         22.40351437]]2.7Line2D(_line2)[[ 3.         19.66244737] [ 3.         23.50109868]]2.7Line2D(_line3)

    annotata error bar

    fig, ax = plt.subplots(figsize=(8, 6))sns.barplot(x='day', y='total_bill', data=df, capsize=0.2, ax=ax)# show the meanfor p in ax.patches:    h, w, x = p.get_height(), p.get_width(), p.get_x()    xy = (x + w / 2., h / 2)    text = f'Mean:n{h:0.2f}'    ax.annotate(text=text, xy=xy, ha='center', va='center')ax.set(xlabel='day', ylabel='total_bill')plt.show()

    error bar選取sd

    import seaborn as snsimport matplotlib.pyplot as plt sns.set_theme(style="whitegrid")df = sns.load_dataset("tips")#默認畫條形圖sns.barplot(x="day",y="total_bill",data=df,ci="sd",capsize=1.0)## 注意這個ci參數plt.show()print(df.groupby("day").agg({"total_bill":[np.mean]}))print(df.groupby("day").agg({"total_bill":[np.std]}))

         total_bill           meandayThur  17.682742Fri   17.151579Sat   20.441379Sun   21.410000     total_bill            stddayThur   7.886170Fri    8.302660Sat    9.480419Sun    8.832122

    設置置信區間(68)

    import seaborn as snsimport matplotlib.pyplot as plt sns.set_theme(style="whitegrid")df = sns.load_dataset("tips")#默認畫條形圖sns.barplot(x="day",y="total_bill",data=df,ci=68,capsize=1.0)## 注意這個ci參數plt.show()

    設置置信區間(95)

    import seaborn as snsimport matplotlib.pyplot as plt sns.set_theme(style="whitegrid")df = sns.load_dataset("tips")#默認畫條形圖sns.barplot(x="day",y="total_bill",data=df,ci=95)plt.show()#計算平均值看是否和條形圖得高度一致print(df.groupby("day").agg({"total_bill":[np.mean]}))

         total_bill           meandayThur  17.682742Fri   17.151579Sat   20.441379Sun   21.410000

    dataframe aggregate函數使用

    #計算平均值看是否和條形圖得高度一致df = sns.load_dataset("tips")print("="*20)print(df.groupby("day").agg({"total_bill":[np.mean]})) # 分組求均值print("="*20)print(df.groupby("day").agg({"total_bill":[np.std]})) # 分組求標準差print("="*20)print(df.groupby("day").agg({"total_bill":"nunique"})) # 這里統計得是不同得數目print("="*20)print(df.groupby("day").agg({"total_bill":"count"})) # 這里統計得是每個分組樣本得數量print("="*20)print(df["day"].value_counts())print("="*20)
    ====================     total_bill           meandayThur  17.682742Fri   17.151579Sat   20.441379Sun   21.410000====================     total_bill            stddayThur   7.886170Fri    8.302660Sat    9.480419Sun    8.832122====================      total_billdayThur          61Fri           18Sat           85Sun           76====================      total_billdayThur          62Fri           19Sat           87Sun           76====================Sat     87Sun     76Thur    62Fri     19Name: day, dtype: int64====================

    dataframe aggregate 自定義函數

    import numpy as npimport pandas as pddf = pd.DataFrame({'Buy/Sell': [1, 0, 1, 1, 0, 1, 0, 0],                   'Trader': ['A', 'A', 'B', 'B', 'B', 'C', 'C', 'C']})print(df)def categorize(x):    m = x.mean()    return 1 if m > 0.5 else 0 if m < 0.5 else np.nanresult = df.groupby(['Trader'])['Buy/Sell'].agg([categorize, 'sum', 'count'])result = result.rename(columns={'categorize' : 'Buy/Sell'})result
       Buy/Sell Trader0         1      A1         0      A2         1      B3         1      B4         0      B5         1      C6         0      C7         0      C

    dataframe aggregate 自定義函數2

    df = sns.load_dataset("tips")#默認畫條形圖def custom1(x):    m = x.mean()    s = x.std()    n = x.count()# 統計個數    #print(n)    return m+1.96*s/np.sqrt(n)def custom2(x):    m = x.mean()    s = x.std()    n = x.count()# 統計個數    #print(n)    return m+s/np.sqrt(n)sns.barplot(x="day",y="total_bill",data=df,ci=95)plt.show()print(df.groupby("day").agg({"total_bill":[np.std,custom1]})) # 分組求標準差sns.barplot(x="day",y="total_bill",data=df,ci=68)plt.show()print(df.groupby("day").agg({"total_bill":[np.std,custom2]})) #

    ?[外鏈圖片轉存失敗,源站可能有防盜鏈機制,建議將圖片保存下來直接上傳(img-pkCx72ui-1658379974318)(output_24_0.png)]

         total_bill            std    custom1dayThur   7.886170  19.645769Fri    8.302660  20.884910Sat    9.480419  22.433538Sun    8.832122  23.395703

    [外鏈圖片轉存失敗,源站可能有防盜鏈機制,建議將圖片保存下來直接上傳(img-GFyIePmW-1658379974318)(output_24_2.png)]

         total_bill            std    custom2dayThur   7.886170  18.684287Fri    8.302660  19.056340Sat    9.480419  21.457787Sun    8.832122  22.423114

    seaborn顯示網格

    ax=sns.barplot(x="day",y="total_bill",data=df,ci=95)ax.yaxis.grid(True) # Hide the horizontal gridlinesax.xaxis.grid(True) # Show the vertical gridlines

    seaborn設置刻度

    fig, ax = plt.subplots(figsize=(10, 8))sns.barplot(x="day",y="total_bill",data=df,ci=95,ax=ax)ax.set_yticks([i for i in range(30)])ax.yaxis.grid(True) # Hide the horizontal gridlines

    使用其他estaimator

    #estimator 指定條形圖高度使用相加得和sns.barplot(x="day",y="total_bill",data=df,estimator=np.sum)plt.show()#計算想加和看是否和條形圖得高度一致print(df.groupby("day").agg({"total_bill":[np.sum]}))'''     total_bill            sumdayFri      325.88Sat     1778.40Sun     1627.16Thur    1096.33'''

    到此這篇關于Python seaborn barplot畫圖案例得內容就介紹到這了,更多相關Python seaborn barplot 內容請搜索之家以前得內容或繼續瀏覽下面得相關內容希望大家以后多多支持之家!

    聲明:所有內容來自互聯網搜索結果,不保證100%準確性,僅供參考。如若本站內容侵犯了原著者的合法權益,可聯系我們進行處理。
    發表評論
    更多 網友評論1 條評論)
    暫無評論

    返回頂部

    主站蜘蛛池模板: 国产在线精品一区二区高清不卡| 亚洲日本一区二区三区在线不卡| 国产福利微拍精品一区二区| 一本一道波多野结衣AV一区| 日本高清成本人视频一区| 国产色综合一区二区三区| 国产乱码精品一区二区三区| 欧亚精品一区三区免费| 久久久精品人妻一区亚美研究所 | 上原亚衣一区二区在线观看| 精品少妇人妻AV一区二区| 色偷偷av一区二区三区| 亚洲一区二区在线免费观看| 亚洲成AV人片一区二区| 中文字幕无码一区二区三区本日| 波多野结衣中文字幕一区二区三区| 无码人妻aⅴ一区二区三区| 亚洲大尺度无码无码专线一区| 精品人妻系列无码一区二区三区| 亚洲综合一区二区国产精品| 精品一区二区三区中文字幕| 国产精品主播一区二区| 一本色道久久综合一区| 国产精品亚洲综合一区| 精品日本一区二区三区在线观看 | 成人区人妻精品一区二区三区 | 一区二区三区四区视频| 国产一区二区三区不卡观| 日本一区二区免费看| 少妇无码一区二区二三区| 中文字幕精品一区影音先锋| 亚欧在线精品免费观看一区| 亚洲一区二区三区高清不卡| 亚洲另类无码一区二区三区| 好爽毛片一区二区三区四无码三飞 | 老熟妇仑乱视频一区二区 | 日本中文字幕在线视频一区| 区三区激情福利综合中文字幕在线一区亚洲视频1 | 黄桃AV无码免费一区二区三区| 精品国产AⅤ一区二区三区4区 | 性色AV一区二区三区无码|