目錄
前言:
并行編程比程序編程困難,除非正常編程需要創建大量數據,計算耗時太長,物理行為模擬困難
例子:N體問題
物理前提:
- 牛頓定律
- 時間離散運動方程
普通計算方法
import numpy as npimport timeimport matplotlib.pyplot as pltfrom mpl_toolkits.mplot3d import Axes3DNs = [2**i for i in range(1,10)]runtimes = []def remove_i(x,i): "從所有粒子中去除本粒子" shape = (x.shape[0]-1,)+x.shape[1:] y = np.empty(shape,dtype=float) y[:i] = x[:i] y[i:] = x[i+1:] return y def a(i,x,G,m): "計算加速度" x_i = x[i] x_j = remove_i(x,i) m_j = remove_i(m,i) diff = x_j - x_i mag3 = np.sum(diff**2,axis=1)**1.5 result = G * np.sum(diff * (m_j / mag3)[:,np.newaxis],axis=0) return resultdef timestep(x0,v0,G,m,dt): N = len(x0) x1 = np.empty(x0.shape,dtype=float) v1 = np.empty(v0.shape,dtype=float) for i in range(N): a_i0 = a(i,x0,G,m) v1[i] = a_i0 * dt + v0[i] x1[i] = a_i0 * dt**2 + v0[i] * dt + x0[i] return x1,v1 def initial_cond(N,D): x0 = np.array([[1,1,1],[10,10,10]]) v0 = np.array([[10,10,1],[0,0,0]]) m = np.array([10,10]) return x0,v0,mdef stimulate(N,D,S,G,dt): fig = plt.figure() ax = Axes3D(fig) x0,v0,m = initial_cond(N,D) for s in range(S): x1,v1 = timestep(x0,v0,G,m,dt) x0,v0 = x1,v1 t = 0 for i in x0: ax.scatter(i[0],i[1],i[2],label=str(s*dt),c=["black","green","red"][t]) t += 1 t = 0 plt.show()start = time.time()stimulate(2,3,3000,9.8,1e-3)stop = time.time()runtimes.append(stop - start)
效果圖
Python 并行化執行
首先我們給出一個可以用來寫自己得并行化程序得,額,一串代碼
import datetimeimport multiprocessing as mp def accessional_fun(): f = open("accession.txt","r") result = float(f.read()) f.close() return result def final_fun(name, param): result = 0 for num in param: result += num + accessional_fun() * 2 return {name: result}if __name__ == '__main__': start_time = datetime.datetime.now() num_cores = int(mp.cpu_count()) print("你使用得計算機有: " + str(num_cores) + " 個核,當然了,Intel 7 以上得要除以2") print("如果你使用得 Python 是 32 位得,注意數據量不要超過兩個G") print("請你再次檢查你得程序是否已經改成了適合并行運算得樣子") pool = mp.Pool(num_cores) param_dict = {'task1': list(range(10, 300)), 'task2': list(range(300, 600)), 'task3': list(range(600, 900)), 'task4': list(range(900, 1200)), 'task5': list(range(1200, 1500)), 'task6': list(range(1500, 1800)), 'task7': list(range(1800, 2100)), 'task8': list(range(2100, 2400)), 'task9': list(range(2400, 2700)), 'task10': list(range(2700, 3000))} results = [pool.apply_async(final_fun, args=(name, param)) for name, param in param_dict.items()] results = [p.get() for p in results] end_time = datetime.datetime.now() use_time = (end_time - start_time).total_seconds() print("多進程計算 共消耗: " + "{:.2f}".format(use_time) + " 秒") print(results)
運行結果:如下:
accession.txt 里得內容是2.5 這就是一個累加得問題,每次累加得時候都會讀取文件中得2.5
如果需要運算得問題是類似于累加得問題,也就是可并行運算得問題,那么才好做出并行運算得改造
再舉一個例子
import mathimport timeimport multiprocessing as mpdef final_fun(name, param): result = 0 for num in param: result += math.cos(num) + math.sin(num) return {name: result}if __name__ == '__main__': start_time = time.time() num_cores = int(mp.cpu_count()) print("你使用得計算機有: " + str(num_cores) + " 個核,當然了,Intel 7 以上得要除以2") print("如果你使用得 Python 是 32 位得,注意數據量不要超過兩個G") print("請你再次檢查你得程序是否已經改成了適合并行運算得樣子") pool = mp.Pool(num_cores) param_dict = {'task1': list(range(10, 3000000)), 'task2': list(range(3000000, 6000000)), 'task3': list(range(6000000, 9000000)), 'task4': list(range(9000000, 12000000)), 'task5': list(range(12000000, 15000000)), 'task6': list(range(15000000, 18000000)), 'task7': list(range(18000000, 21000000)), 'task8': list(range(21000000, 24000000)), 'task9': list(range(24000000, 27000000)), 'task10': list(range(27000000, 30000000))} results = [pool.apply_async(final_fun, args=(name, param)) for name, param in param_dict.items()] results = [p.get() for p in results] end_time = time.time() use_time = end_time - start_time print("多進程計算 共消耗: " + "{:.2f}".format(use_time) + " 秒") result = 0 for i in range(0,10): result += results[i].get("task"+str(i+1)) print(result) start_time = time.time() result = 0 for i in range(10,30000000): result += math.cos(i) + math.sin(i) end_time = time.time() print("單進程計算 共消耗: " + "{:.2f}".format(end_time - start_time) + " 秒") print(result)
運行結果:
力學問題改進:
import numpy as npimport timefrom mpi4py import MPIfrom mpi4py.MPI import COMM_WORLDfrom types import FunctionTypefrom matplotlib import pyplot as pltfrom multiprocessing import Pooldef remove_i(x,i): shape = (x.shape[0]-1,) + x.shape[1:] y = np.empty(shape,dtype=float) y[:1] = x[:1] y[i:] = x[i+1:] return ydef a(i,x,G,m): x_i = x[i] x_j = remove_i(x,i) m_j = remove_i(m,i) diff = x_j - x_i mag3 = np.sum(diff**2,axis=1)**1.5 result = G * np.sum(diff * (m_j/mag3)[:,np.newaxis],axis=0) return result def timestep(x0,v0,G,m,dt,pool): N = len(x0) takes = [(i,x0,v0,G,m,dt) for i in range(N)] results = pool.map(timestep_i,takes) x1 = np.empty(x0.shape,dtype=float) v1 = np.empty(v0.shape,dtype=float) for i,x_i1,v_i1 in results: x1[i] = x_i1 v1[i] = v_i1 return x1,v1def timestep_i(args): i,x0,v0,G,m,dt = args a_i0 = a(i,x0,G,m) v_i1 = a_i0 * dt + v0[i] x_i1 = a_i0 * dt ** 2 +v0[i]*dt + x0[i] return i,x_i1,v_i1def initial_cond(N,D): x0 = np.random.rand(N,D) v0 = np.zeros((N,D),dtype=float) m = np.ones(N,dtype=float) return x0,v0,mclass Pool(object): def __init__(self): self.f = None self.P = COMM_WORLD.Get_size() self.rank = COMM_WORLD.Get_rank() def wait(self): if self.rank == 0: raise RuntimeError("Proc 0 cannot wait!") status = MPI.Status() while True: task = COMM_WORLD.recv(source=0,tag=MPI.ANY_TAG,status=status) if not task: break if isinstance(task,FunctionType): self.f = task continue result = self.f(task) COMM_WORLD.isend(result,dest=0,tag=status.tag) def map(self,f,tasks): N = len(tasks) P = self.P Pless1 = P - 1 if self.rank != 0: self.wait() return if f is not self.f: self.f = f requests = [] for p in range(1,self.P): r = COMM_WORLD.isend(f,dest=p) requests.append(r) MPI.Request.waitall(requests) results = [] for i in range(N): result = COMM_WORLD.recv(source=(i%Pless1)+1,tag=i) results.append(result) return results def __del__(self): if self.rank == 0: for p in range(1,self.p): COMM_WORLD.isend(False,dest=p)def simulate(N,D,S,G,dt): x0,v0,m = initial_cond(N,D) pool = Pool() if COMM_WORLD.Get_rank()==0: for s in range(S): x1,v1 = timestep(x0,v0,G,m,dt,pool) x0,v0 = x1,v1 else: pool.wait()if __name__ == '__main__': simulate(128,3,300,1.0,0.001)Ps = [1,2,4,8]runtimes = []for P in Ps: start = time.time() simulate(128,3,300,1.0,0.001) stop = time.time() runtimes.append(stop - start)print(runtimes)
到此這篇關于Python 并行化執行詳細解析得內容就介紹到這了,更多相關Python 并行化執行內容請搜索之家以前得內容或繼續瀏覽下面得相關內容希望大家以后多多支持之家!
聲明:所有內容來自互聯網搜索結果,不保證100%準確性,僅供參考。如若本站內容侵犯了原著者的合法權益,可聯系我們進行處理。