Mapping behavioural actions to neural activity is a fundamental goal of neuroscience. As our ability to record large neural and behavioural data increases, there is growing interest in modeling neural dynamics during adaptive behaviors to probe neural representations. In particular, neural latent embeddings can reveal underlying correlates of behavior, yet, we lack non-linear techniques that can explicitly and flexibly leverage joint behavior and neural data to uncover neural dynamics. Here, we fill this gap with a novel encoding method, CEBRA, that jointly uses behavioural and neural data in a (supervised) hypothesis- or (self-supervised) discovery-driven manner to produce both consistent and high-performance latent spaces. We show that consistency can be used as a metric for uncovering meaningful differences, and the inferred latents can be used for decoding. We validate its accuracy and demonstrate our tool's utility for both calcium and electrophysiology datasets, across sensory and motor tasks, and in simple or complex behaviors across species. It allows for single and multi-session datasets to be leveraged for hypothesis testing or can be used label-free. Lastly, we show that CEBRA can be used for the mapping of space, uncovering complex kinematic features, produces consistent latent spaces across 2-photon and Neuropixels data, and can provide rapid, high-accuracy decoding of natural movies from visual cortex.

Pre-Print

The pre-print is available on arxiv at arxiv.org/abs/2204.00673.

Software

You can find our official implementation of the CEBRA algorithm on GitHub: Watch and Star the repository to be notified of future updates and releases. You can also follow us on Twitter or subscribe to our mailing list for updates on the project.

If you are interested in collaborations, please contact us via email.

BibTeX

Please cite our paper as follows:

@article{schneider2023cebra,
  author={Schneider, Steffen and Lee, Jin Hwa and Mathis, Mackenzie Weygandt},
  title={Learnable latent embeddings for joint behavioural and neural analysis},
  journal={Nature},
  year={2023},
  month={May},
  day={03},
  issn={1476-4687},
  doi={10.1038/s41586-023-06031-6},
  url={https://doi.org/10.1038/s41586-023-06031-6}
}
Webpage designed using Bootstrap 5 and Fontawesome 5.
主站蜘蛛池模板: 日本精品视频一区二区三区| 99精品国产一区二区三区不卡| 任你躁国产自任一区二区三区| 精品熟人妻一区二区三区四区不卡 | 日韩人妻无码一区二区三区久久99| 国产99视频精品一区| 精品一区二区三区四区| 男人的天堂亚洲一区二区三区 | 在线精品一区二区三区| 一区二区在线观看视频| 精品国产一区二区三区2021| 日韩精品人妻av一区二区三区| 久久久久人妻精品一区三寸| 中文无码一区二区不卡αv| 人妻免费一区二区三区最新| 国产成人久久一区二区三区| 日本一区二区三区不卡视频| 亚洲中文字幕一区精品自拍| 伊人久久精品一区二区三区| 精品午夜福利无人区乱码一区| 日韩最新视频一区二区三| 一区二区三区四区精品视频| 精品一区二区三区东京热| 亚洲视频一区在线播放| 成人精品一区二区户外勾搭野战| 色欲综合一区二区三区| 无码国产精成人午夜视频一区二区 | 国产日韩精品视频一区二区三区| 国产成人精品视频一区二区不卡| 亚洲AV无码一区二区二三区软件| 亚洲国产精品一区二区第一页| 久久中文字幕一区二区| ...91久久精品一区二区三区| 亚洲AV日韩综合一区尤物| 无码少妇A片一区二区三区| 国产成人一区二区三区电影网站| 国产高清视频一区二区| 久久国产高清一区二区三区| 看电影来5566一区.二区| 久久综合亚洲色一区二区三区| 日韩欧美一区二区三区免费观看|