Skip to content

    johannakarras/DreamPose

    Repository files navigation

    DreamPose

    Official implementation of "DreamPose: Fashion Image-to-Video Synthesis via Stable Diffusion" by Johanna Karras, Aleksander Holynski, Ting-Chun Wang, and Ira Kemelmacher-Shlizerman.

    Teaser Image

    Demo

    You can generate a video using DreamPose using our pretrained models.

    1. Download and unzip the pretrained models inside demo/custom-chkpts.zip
    2. Download and unzip the input poses inside demo/sample/poses.zip
    3. Run demo.py using the command below:
      python test.py --epoch 499 --folder demo/custom-chkpts --pose_folder demo/sample/poses  --key_frame_path demo/sample/key_frame.png --s1 8 --s2 3 --n_steps 100 --output_dir demo/sample/results --custom_vae demo/custom-chkpts/vae_1499.pth
      

    Data Preparation

    To prepare a sample for finetuning, create a directory containing train and test subdirectories containing the train frames (desired subject) and test frames (desired pose sequence), respectively. Note that the test frames are not expected to be of the same subject. See demo/sample for an example.

    Then, run DensePose using the "densepose_rcnn_R_50_FPN_s1x" checkpoint on all images in the sample directory. Finally, reformat the pickled DensePose output using utils/densepose.py. You need to change the "outpath" filepath to point to the pickled DensePose output.

    Download or Finetune Base Model

    DreamPose is finetuned on the UBC Fashion Dataset from a pretrained Stable Diffusion checkpoint. You can download our pretrained base model from Google Drive, or finetune pretrained Stable Diffusion on your own image dataset. We train on 2 NVIDIA A100 GPUs.

    accelerate launch --num_processes=4 train.py --pretrained_model_name_or_path="CompVis/stable-diffusion-v1-4" --instance_data_dir=../path/to/dataset --output_dir=checkpoints --resolution=512 --train_batch_size=2 --gradient_accumulation_steps=4 --learning_rate=5e-6 --lr_scheduler="constant" --lr_warmup_steps=0 --num_train_epochs=300 --run_name dreampose --dropout_rate=0.15 --revision "ebb811dd71cdc38a204ecbdd6ac5d580f529fd8c"
    

    Finetune on Sample

    In this next step, we finetune DreamPose on a one or more input frames to create a subject-specific model.

    1. Finetune the UNet

      accelerate launch finetune-unet.py --pretrained_model_name_or_path="CompVis/stable-diffusion-v1-4" --instance_data_dir=demo/sample/train --output_dir=demo/custom-chkpts --resolution=512 --train_batch_size=1 --gradient_accumulation_steps=1 --learning_rate=1e-5 --num_train_epochs=500 --dropout_rate=0.0 --custom_chkpt=checkpoints/unet_epoch_20.pth --revision "ebb811dd71cdc38a204ecbdd6ac5d580f529fd8c"
      
    2. Finetune the VAE decoder

      accelerate launch --num_processes=1 finetune-vae.py --pretrained_model_name_or_path="CompVis/stable-diffusion-v1-4"  --instance_data_dir=demo/sample/train --output_dir=demo/custom-chkpts --resolution=512  --train_batch_size=4 --gradient_accumulation_steps=4 --learning_rate=5e-5 --num_train_epochs=1500 --run_name finetuning/ubc-vae --revision "ebb811dd71cdc38a204ecbdd6ac5d580f529fd8c"
      

    Testing

    Once you have finetuned your custom, subject-specific DreamPose model, you can generate frames using the following command:

    python test.py --epoch 499 --folder demo/custom-chkpts --pose_folder demo/sample/poses  --key_frame_path demo/sample/key_frame.png --s1 8 --s2 3 --n_steps 100 --output_dir results --custom_vae demo/custom-chkpts/vae_1499.pth
    

    Acknowledgment

    This code is largely adapted from the Hugging Face diffusers repo.

    About

    Official implementation of "DreamPose: Fashion Image-to-Video Synthesis via Stable Diffusion"

    Resources

    License

    Stars

    Watchers

    Forks

    Releases

    No releases published

    Packages

    No packages published

    Languages

    主站蜘蛛池模板: 亚洲av无码一区二区三区乱子伦 | 日韩一区二区免费视频| 中文无码精品一区二区三区 | 人妻AV中文字幕一区二区三区| 国产吧一区在线视频| 精产国品一区二区三产区| 亚洲色精品vr一区二区三区| 精品一区二区三区电影| 日韩一区二区三区无码影院| 国产伦一区二区三区高清| 午夜视频一区二区| 亚洲变态另类一区二区三区| 人妻无码视频一区二区三区| 久久久无码精品国产一区| 亚洲毛片αv无线播放一区| 日韩一区二区免费视频| 国产一区二区三区不卡在线看| 人妻无码久久一区二区三区免费 | 一区二区三区在线视频播放| 午夜在线视频一区二区三区 | chinese国产一区二区| 韩国精品一区视频在线播放| 99久久精品日本一区二区免费| 久久久av波多野一区二区| 麻豆文化传媒精品一区二区| 日本一区二区三区精品中文字幕| 国产福利电影一区二区三区久久久久成人精品综合 | 国产手机精品一区二区| 任你躁国语自产一区在| 亚洲一区二区三区日本久久九| 日本成人一区二区| 一区二区三区午夜视频| 国产精品一区视频| 欧洲亚洲综合一区二区三区| 国产裸体舞一区二区三区| 视频一区二区三区在线观看| 一区二区三区视频在线播放| 亚洲色婷婷一区二区三区| 精品黑人一区二区三区| 国产精品美女一区二区三区| 福利片福利一区二区三区|