亚洲国产爱久久全部精品_日韩有码在线播放_国产欧美在线观看_中文字幕不卡在线观看

Skip to content

microsoft/MPNet

MPNet

MPNet: Masked and Permuted Pre-training for Language Understanding, by Kaitao Song, Xu Tan, Tao Qin, Jianfeng Lu, Tie-Yan Liu, is a novel pre-training method for language understanding tasks. It solves the problems of MLM (masked language modeling) in BERT and PLM (permuted language modeling) in XLNet and achieves better accuracy.

News: We have updated the pre-trained models now.

Supported Features

  • A unified view and implementation of several pre-training models including BERT, XLNet, MPNet, etc.
  • Code for pre-training and fine-tuning for a variety of language understanding (GLUE, SQuAD, RACE, etc) tasks.

Installation

We implement MPNet and this pre-training toolkit based on the codebase of fairseq. The installation is as follow:

pip install --editable pretraining/
pip install pytorch_transformers==1.0.0 transformers scipy sklearn

Pre-training MPNet

Our model is pre-trained with bert dictionary, you first need to pip install transformers to use bert tokenizer. We provide a script encode.py and a dictionary file dict.txt to tokenize your corpus. You can modify encode.py if you want to use other tokenizers (like roberta).

1) Preprocess data

We choose WikiText-103 as a demo. The running script is as follow:

wget https://s3.amazonaws.com/research.metamind.io/wikitext/wikitext-103-raw-v1.zip
unzip wikitext-103-raw-v1.zip

for SPLIT in train valid test; do \
    python MPNet/encode.py \
        --inputs wikitext-103-raw/wiki.${SPLIT}.raw \
        --outputs wikitext-103-raw/wiki.${SPLIT}.bpe \
        --keep-empty \
        --workers 60; \
done

Then, we need to binarize data. The command of binarizing data is following:

fairseq-preprocess \
    --only-source \
    --srcdict MPNet/dict.txt \
    --trainpref wikitext-103-raw/wiki.train.bpe \
    --validpref wikitext-103-raw/wiki.valid.bpe \
    --testpref wikitext-103-raw/wiki.test.bpe \
    --destdir data-bin/wikitext-103 \
    --workers 60

2) Pre-train MPNet

The below command is to train a MPNet model:

TOTAL_UPDATES=125000    # Total number of training steps
WARMUP_UPDATES=10000    # Warmup the learning rate over this many updates
PEAK_LR=0.0005          # Peak learning rate, adjust as needed
TOKENS_PER_SAMPLE=512   # Max sequence length
MAX_POSITIONS=512       # Num. positional embeddings (usually same as above)
MAX_SENTENCES=16        # Number of sequences per batch (batch size)
UPDATE_FREQ=16          # Increase the batch size 16x

DATA_DIR=data-bin/wikitext-103

fairseq-train --fp16 $DATA_DIR \
    --task masked_permutation_lm --criterion masked_permutation_cross_entropy \
    --arch mpnet_base --sample-break-mode complete --tokens-per-sample $TOKENS_PER_SAMPLE \
    --optimizer adam --adam-betas '(0.9,0.98)' --adam-eps 1e-6 --clip-norm 0.0 \
    --lr-scheduler polynomial_decay --lr $PEAK_LR --warmup-updates $WARMUP_UPDATES --total-num-update $TOTAL_UPDATES \
    --dropout 0.1 --attention-dropout 0.1 --weight-decay 0.01 \
    --max-sentences $MAX_SENTENCES --update-freq $UPDATE_FREQ \
    --max-update $TOTAL_UPDATES --log-format simple --log-interval 1 --input-mode 'mpnet'

Notes: You can replace arch with mpnet_rel_base and add command --mask-whole-words --bpe bert to use relative position embedding and whole word mask.

Notes: You can specify --input-mode as mlm or plm to train masked language model or permutation language model.

Pre-trained models

We have updated the final pre-trained MPNet model for fine-tuning.

You can load the pre-trained MPNet model like this:

from fairseq.models.masked_permutation_net import MPNet
mpnet = MPNet.from_pretrained('checkpoints', 'checkpoint_best.pt', 'path/to/data', bpe='bert')
assert isinstance(mpnet.model, torch.nn.Module)

Fine-tuning MPNet on down-streaming tasks

Acknowledgements

Our code is based on fairseq-0.8.0. Thanks for their contribution to the open-source commuity.

Reference

If you find this toolkit useful in your work, you can cite the corresponding papers listed below:

@article{song2020mpnet,
    title={MPNet: Masked and Permuted Pre-training for Language Understanding},
    author={Song, Kaitao and Tan, Xu and Qin, Tao and Lu, Jianfeng and Liu, Tie-Yan},
    journal={arXiv preprint arXiv:2004.09297},
    year={2020}
}

Related Works

About

MPNet: Masked and Permuted Pre-training for Language Understanding https://arxiv.org/pdf/2004.09297.pdf

Resources

License

Code of conduct

Contributing

Security policy

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published
亚洲国产爱久久全部精品_日韩有码在线播放_国产欧美在线观看_中文字幕不卡在线观看

    
    

    9000px;">

      
      

      国产亚洲一区二区在线观看| 欧美日韩在线直播| 日韩黄色免费电影| 一区精品在线播放| 国产日韩三级在线| 久久这里只有精品视频网| 欧美二区三区91| 欧美日韩国产首页| 欧美图片一区二区三区| 在线亚洲免费视频| 在线观看免费一区| 欧美视频一区二区| 69av一区二区三区| 日韩免费高清av| 欧美电影免费观看高清完整版在| 欧美一级午夜免费电影| 91精品国产综合久久久久久久| 欧美性受极品xxxx喷水| 在线播放中文一区| 欧美一区二区免费视频| 日韩三级精品电影久久久| 精品蜜桃在线看| 中文在线资源观看网站视频免费不卡| 久久先锋资源网| 国产精品日韩精品欧美在线| **欧美大码日韩| 亚洲女性喷水在线观看一区| 一区二区三区日韩精品| 免费高清在线一区| 国产乱子伦一区二区三区国色天香| 国产美女娇喘av呻吟久久| 丁香婷婷综合五月| 色综合天天在线| 欧美日韩1234| 欧美韩日一区二区三区四区| 亚洲色图在线播放| 日韩成人精品在线| 懂色av中文一区二区三区| 在线观看视频一区二区| 精品少妇一区二区三区日产乱码| 欧美激情一区二区三区四区| 午夜电影网一区| 琪琪久久久久日韩精品| 成人午夜av影视| 91精品国产综合久久久久久久久久| 久久人人爽人人爽| 亚洲午夜久久久久久久久久久 | 欧美艳星brazzers| 精品国产1区2区3区| 亚洲精品成人精品456| 免费日本视频一区| 色网综合在线观看| 日韩免费性生活视频播放| 亚洲日本va午夜在线影院| 久久精品久久99精品久久| 91丝袜呻吟高潮美腿白嫩在线观看| 欧美老肥妇做.爰bbww视频| 久久久不卡影院| 日韩国产成人精品| 色视频欧美一区二区三区| 久久久久久久久99精品| 五月婷婷综合网| 99re成人在线| 国产精品嫩草99a| 狂野欧美性猛交blacked| 91久久国产最好的精华液| 国产精品久久久久久久久果冻传媒| 图片区小说区国产精品视频| 91九色最新地址| ...xxx性欧美| 成人高清视频免费观看| 精品久久久久久久久久久久久久久| 亚洲午夜一二三区视频| 色噜噜久久综合| 国产精品麻豆一区二区| 国产成人精品亚洲777人妖| 欧美大黄免费观看| 国产成人在线免费观看| 日韩成人精品在线观看| 懂色av一区二区在线播放| 4438亚洲最大| 亚洲成国产人片在线观看| 91麻豆高清视频| 亚洲精品视频在线观看网站| 91美女福利视频| 亚洲色图在线播放| 91精品办公室少妇高潮对白| 亚洲午夜av在线| 欧美视频一区二区三区四区| 午夜精品影院在线观看| 欧美理论片在线| 免费看日韩a级影片| 欧美大肚乱孕交hd孕妇| 国产精品123区| 亚洲欧洲精品成人久久奇米网| 国产美女在线观看一区| 中文在线资源观看网站视频免费不卡 | 成人精品gif动图一区| 综合在线观看色| 春色校园综合激情亚洲| 久久免费美女视频| 国产激情一区二区三区四区| 国产精品久久久久久亚洲伦 | 亚洲一区av在线| 日韩精品一区在线| 成人国产精品免费观看| 亚洲欧美偷拍三级| 欧美一区二区三区喷汁尤物| 国产一区二区三区在线观看免费视频 | 欧美一级在线观看| 久久激情五月激情| 制服丝袜一区二区三区| 日韩中文字幕麻豆| 日韩一级二级三级精品视频| 激情文学综合丁香| 尤物视频一区二区| 久久综合一区二区| 色美美综合视频| 久久97超碰国产精品超碰| 国产精品久久久久久久蜜臀 | 天堂精品中文字幕在线| 26uuu另类欧美亚洲曰本| 99久久久免费精品国产一区二区| 性欧美疯狂xxxxbbbb| 久久理论电影网| 欧美喷水一区二区| bt欧美亚洲午夜电影天堂| 日本视频免费一区| 亚洲欧美韩国综合色| 久久婷婷国产综合国色天香| 欧美三级午夜理伦三级中视频| 国产激情精品久久久第一区二区 | 日韩三级精品电影久久久| 国产91在线|亚洲| 美女视频一区二区| 悠悠色在线精品| 国产精品久久久久久久久图文区 | av激情亚洲男人天堂| 国产一区视频网站| 亚洲444eee在线观看| 综合欧美亚洲日本| 久久久久久久久久看片| 欧美一区二区在线不卡| 欧美性色黄大片| 一本到三区不卡视频| 国产成人自拍网| 激情文学综合网| 久久国产精品第一页| 午夜电影久久久| 91麻豆国产在线观看| 成人小视频在线| 日本午夜一本久久久综合| 青青草97国产精品免费观看 | 成人免费视频免费观看| 国产精品911| 国产精品自拍在线| aa级大片欧美| bt欧美亚洲午夜电影天堂| 岛国精品在线播放| 国产麻豆精品久久一二三| 国产精品一线二线三线精华| 精品一区二区免费在线观看| 精品综合免费视频观看| 韩国一区二区视频| 国产精品88av| av欧美精品.com| 欧日韩精品视频| 欧美蜜桃一区二区三区| 日韩一区二区三免费高清| 日韩精品一区二区三区中文不卡| 精品乱码亚洲一区二区不卡| 日韩欧美一二三四区| 亚洲人成小说网站色在线 | 国产欧美一区二区精品忘忧草| 久久久久久电影| 中文欧美字幕免费| 亚洲色图视频免费播放| 性做久久久久久免费观看| 精品在线播放免费| 成人精品鲁一区一区二区| 欧美性色黄大片| 精品国产麻豆免费人成网站| 中文字幕欧美一| 日本人妖一区二区| 国产精品一线二线三线精华| 色婷婷综合在线| 欧美一区二区免费视频| 中日韩免费视频中文字幕| 国产美女在线精品| 欧亚洲嫩模精品一区三区| 欧美xxxxx裸体时装秀| 欧美精品v国产精品v日韩精品| 国产日韩精品一区| 一区二区欧美国产| 久久99最新地址| 99精品视频在线免费观看| 日韩一二三四区| 一区二区三区四区精品在线视频| 精品一区二区日韩| 欧美日韩国产首页|