亚洲国产爱久久全部精品_日韩有码在线播放_国产欧美在线观看_中文字幕不卡在线观看

Skip to content

microsoft/MPNet

MPNet

MPNet: Masked and Permuted Pre-training for Language Understanding, by Kaitao Song, Xu Tan, Tao Qin, Jianfeng Lu, Tie-Yan Liu, is a novel pre-training method for language understanding tasks. It solves the problems of MLM (masked language modeling) in BERT and PLM (permuted language modeling) in XLNet and achieves better accuracy.

News: We have updated the pre-trained models now.

Supported Features

  • A unified view and implementation of several pre-training models including BERT, XLNet, MPNet, etc.
  • Code for pre-training and fine-tuning for a variety of language understanding (GLUE, SQuAD, RACE, etc) tasks.

Installation

We implement MPNet and this pre-training toolkit based on the codebase of fairseq. The installation is as follow:

pip install --editable pretraining/
pip install pytorch_transformers==1.0.0 transformers scipy sklearn

Pre-training MPNet

Our model is pre-trained with bert dictionary, you first need to pip install transformers to use bert tokenizer. We provide a script encode.py and a dictionary file dict.txt to tokenize your corpus. You can modify encode.py if you want to use other tokenizers (like roberta).

1) Preprocess data

We choose WikiText-103 as a demo. The running script is as follow:

wget https://s3.amazonaws.com/research.metamind.io/wikitext/wikitext-103-raw-v1.zip
unzip wikitext-103-raw-v1.zip

for SPLIT in train valid test; do \
    python MPNet/encode.py \
        --inputs wikitext-103-raw/wiki.${SPLIT}.raw \
        --outputs wikitext-103-raw/wiki.${SPLIT}.bpe \
        --keep-empty \
        --workers 60; \
done

Then, we need to binarize data. The command of binarizing data is following:

fairseq-preprocess \
    --only-source \
    --srcdict MPNet/dict.txt \
    --trainpref wikitext-103-raw/wiki.train.bpe \
    --validpref wikitext-103-raw/wiki.valid.bpe \
    --testpref wikitext-103-raw/wiki.test.bpe \
    --destdir data-bin/wikitext-103 \
    --workers 60

2) Pre-train MPNet

The below command is to train a MPNet model:

TOTAL_UPDATES=125000    # Total number of training steps
WARMUP_UPDATES=10000    # Warmup the learning rate over this many updates
PEAK_LR=0.0005          # Peak learning rate, adjust as needed
TOKENS_PER_SAMPLE=512   # Max sequence length
MAX_POSITIONS=512       # Num. positional embeddings (usually same as above)
MAX_SENTENCES=16        # Number of sequences per batch (batch size)
UPDATE_FREQ=16          # Increase the batch size 16x

DATA_DIR=data-bin/wikitext-103

fairseq-train --fp16 $DATA_DIR \
    --task masked_permutation_lm --criterion masked_permutation_cross_entropy \
    --arch mpnet_base --sample-break-mode complete --tokens-per-sample $TOKENS_PER_SAMPLE \
    --optimizer adam --adam-betas '(0.9,0.98)' --adam-eps 1e-6 --clip-norm 0.0 \
    --lr-scheduler polynomial_decay --lr $PEAK_LR --warmup-updates $WARMUP_UPDATES --total-num-update $TOTAL_UPDATES \
    --dropout 0.1 --attention-dropout 0.1 --weight-decay 0.01 \
    --max-sentences $MAX_SENTENCES --update-freq $UPDATE_FREQ \
    --max-update $TOTAL_UPDATES --log-format simple --log-interval 1 --input-mode 'mpnet'

Notes: You can replace arch with mpnet_rel_base and add command --mask-whole-words --bpe bert to use relative position embedding and whole word mask.

Notes: You can specify --input-mode as mlm or plm to train masked language model or permutation language model.

Pre-trained models

We have updated the final pre-trained MPNet model for fine-tuning.

You can load the pre-trained MPNet model like this:

from fairseq.models.masked_permutation_net import MPNet
mpnet = MPNet.from_pretrained('checkpoints', 'checkpoint_best.pt', 'path/to/data', bpe='bert')
assert isinstance(mpnet.model, torch.nn.Module)

Fine-tuning MPNet on down-streaming tasks

Acknowledgements

Our code is based on fairseq-0.8.0. Thanks for their contribution to the open-source commuity.

Reference

If you find this toolkit useful in your work, you can cite the corresponding papers listed below:

@article{song2020mpnet,
    title={MPNet: Masked and Permuted Pre-training for Language Understanding},
    author={Song, Kaitao and Tan, Xu and Qin, Tao and Lu, Jianfeng and Liu, Tie-Yan},
    journal={arXiv preprint arXiv:2004.09297},
    year={2020}
}

Related Works

About

MPNet: Masked and Permuted Pre-training for Language Understanding https://arxiv.org/pdf/2004.09297.pdf

Resources

License

Code of conduct

Contributing

Security policy

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 3

  •  
  •  
  •  
亚洲国产爱久久全部精品_日韩有码在线播放_国产欧美在线观看_中文字幕不卡在线观看

    
    

    9000px;">

      
      

      国产色91在线| 精品亚洲成a人| 欧美日韩一区在线| 国产盗摄一区二区| 国产999精品久久久久久| 国产资源在线一区| 亚洲宅男天堂在线观看无病毒| 亚洲天堂a在线| 成人av影院在线| 丁香网亚洲国际| 欧美三级电影在线看| 欧美性猛交xxxxxx富婆| 国产成人综合视频| 欧美区视频在线观看| 国产精品久99| 精品日韩99亚洲| 成人免费电影视频| 久久午夜国产精品| 激情欧美一区二区三区在线观看| 极品美女销魂一区二区三区免费| 日本久久一区二区| 欧美自拍丝袜亚洲| 粉嫩在线一区二区三区视频| 99精品1区2区| 麻豆免费看一区二区三区| 欧美激情综合五月色丁香小说| 国产精品羞羞答答xxdd| 激情图区综合网| 最新欧美精品一区二区三区| 在线播放欧美女士性生活| 国内久久精品视频| 国产精品不卡一区| 国产高清精品久久久久| 91香蕉视频在线| 日韩欧美在线一区二区三区| 久久精品欧美一区二区三区麻豆 | 久久精品日韩一区二区三区| 亚洲国产成人自拍| 免费在线观看一区二区三区| 欧美日韩亚洲综合一区| 亚洲国产美女搞黄色| 97精品视频在线观看自产线路二| 成人永久免费视频| 久久婷婷国产综合精品青草 | 亚洲日本欧美天堂| 亚洲一卡二卡三卡四卡五卡| 欧美羞羞免费网站| 成人性视频免费网站| 国产v日产∨综合v精品视频| 日韩午夜av一区| 免费不卡在线观看| 亚洲成av人片一区二区三区| 97se狠狠狠综合亚洲狠狠| 五月综合激情网| 久久久综合视频| 欧美一区二区大片| 欧美体内she精视频| 91精品1区2区| 亚洲精品一区二区三区香蕉| 久久精品亚洲国产奇米99| 最新国产精品久久精品| 99r国产精品| 欧美日韩一区视频| 色婷婷精品久久二区二区蜜臀av| 激情都市一区二区| 久久国产三级精品| 欧美变态tickling挠脚心| 国内精品免费**视频| 欧美不卡一二三| 日韩中文欧美在线| 99精品国产99久久久久久白柏| 国产人妖乱国产精品人妖| 狂野欧美性猛交blacked| 国产日韩一级二级三级| 成人av资源在线观看| 午夜私人影院久久久久| 国产亚洲精品资源在线26u| 中文字幕免费不卡在线| 国产亚洲一区二区三区四区| 国产精品传媒入口麻豆| 亚洲影院免费观看| 麻豆精品视频在线观看免费| 国产91精品入口| 欧美午夜精品一区| 久久久美女毛片| 亚洲国产综合色| 国产乱码一区二区三区| 成人久久久精品乱码一区二区三区 | 成人一区二区三区中文字幕| 色94色欧美sute亚洲线路一久| 欧美精品欧美精品系列| 中文一区在线播放| 免费人成网站在线观看欧美高清| 成人综合在线观看| 日韩一区二区免费在线电影| 亚洲欧洲另类国产综合| 极品少妇一区二区| 4438x亚洲最大成人网| 中文字幕五月欧美| 国产精品一区二区在线看| 欧美三级日韩在线| 国产欧美日韩亚州综合| 蜜桃视频免费观看一区| 色婷婷精品久久二区二区蜜臂av | 久久亚洲精品小早川怜子| 一区二区在线观看免费视频播放| 国内偷窥港台综合视频在线播放| 欧美性色aⅴ视频一区日韩精品| 亚洲精品一区二区三区四区高清| 亚洲无线码一区二区三区| 97久久超碰精品国产| 国产精品理伦片| 国产美女主播视频一区| 91精品国产欧美一区二区成人| 中文字幕一区在线| 国产精品456露脸| 日韩欧美色电影| 香蕉乱码成人久久天堂爱免费| 99久久国产综合精品麻豆| 国产亚洲精品中文字幕| 狠狠色综合日日| 日韩精品一区二区在线观看| 日韩精品1区2区3区| 欧美丰满少妇xxxxx高潮对白| 夜夜夜精品看看| 一区二区三区在线播| 成人涩涩免费视频| 免费在线欧美视频| 亚洲一区二区三区四区五区中文| 欧美一区二区三区影视| av欧美精品.com| 久草精品在线观看| 亚洲一区在线播放| 大胆欧美人体老妇| 亚洲激情欧美激情| 一区二区成人在线| 国产伦精品一区二区三区在线观看| 久久日韩精品一区二区五区| 在线免费观看日本一区| 国产成人夜色高潮福利影视| 91黄视频在线| 青青草伊人久久| 天堂在线亚洲视频| 色综合久久综合网97色综合| 青青草91视频| 蜜臀久久99精品久久久久久9| 综合婷婷亚洲小说| 久久精品人人做人人爽97| 日韩精品专区在线影院重磅| 欧美久久久久久蜜桃| 这里只有精品99re| 久久一区二区三区国产精品| 欧美一级久久久| 99精品久久久久久| 丁香五精品蜜臀久久久久99网站| 成人一区二区三区中文字幕| 91麻豆国产福利精品| 6080日韩午夜伦伦午夜伦| 精品国产成人在线影院| 国产精品白丝在线| 日韩不卡免费视频| 国产美女娇喘av呻吟久久| 99久久综合精品| 日韩视频中午一区| 亚洲精品综合在线| 婷婷六月综合网| 欧美久久免费观看| 亚洲精品一区二区三区福利| 午夜电影网亚洲视频| 久久欧美一区二区| 一区二区免费在线| 国产一区亚洲一区| 伊人婷婷欧美激情| 日韩国产欧美在线播放| 欧美日韩激情一区二区| 欧美大片在线观看一区二区| 欧美一区二区精品在线| 欧美三区免费完整视频在线观看| 欧美视频在线一区二区三区| 黑人巨大精品欧美黑白配亚洲| 亚洲精品视频一区| 国产日产精品1区| 免费成人性网站| 欧美一区二区啪啪| 天天色综合天天| 人人精品人人爱| www日韩大片| 欧美日韩色综合| 视频一区欧美日韩| 精品国产欧美一区二区| 免费高清成人在线| 欧美色视频在线观看| av在线播放不卡| 91精品国产免费| 精品中文字幕一区二区小辣椒 | 亚洲一区免费在线观看| 国产精品视频yy9299一区| 日韩亚洲欧美一区| 欧美老女人第四色| 日本韩国一区二区三区视频|