Skip to content

    FaceAdapter/Face-Adapter

    Repository files navigation

    Face Adapter for Pre-Trained Diffusion Models with Fine-Grained ID and Attribute Control

    arXiv GitHub

    Introduction

    Face-Adapter is an efficient and effective face editing adapter for pre-trained diffusion models, specifically targeting face reenactment and swapping tasks.

    Release

    • [2024/5/25] ?? We release the gradio demo.
    • [2024/5/24] ?? We release the code and models.

    Installation

    # Torch >= 2.0 recommended for acceleration without xformers
    pip install accelerate diffusers==0.26.0 insightface onnxruntime
    
    

    Download Models

    You can download models of FaceAdapter directly from here or download using python script:

    # Download all files 
    from huggingface_hub import snapshot_download
    snapshot_download(repo_id="FaceAdapter/FaceAdapter", local_dir="./checkpoints")
    
    # If you want to download one specific file
    from huggingface_hub import hf_hub_download
    hf_hub_download(repo_id="FaceAdapter/FaceAdapter", filename="controlnet/config.json", local_dir="./checkpoints")

    To run the demo, you should also download the pre-trained SD models below:

    ? Quick Inference

    SD_1.5

    python infer.py 

    You can adjust the cropping size with the --crop_ratio (default:0.81)parameter. But be careful not to set the crop range too large, as this can decrease the quality of the generated images due to the limit of the training data size.

    ?? FaceAdapter can be seamlessly plugged into community models:

    python infer.py --base_model "frankjoshua/toonyou_beta6"

    Disclaimer

    This project strives to positively impact the domain of AI-driven image generation. Users are granted the freedom to create images using this tool, but they are expected to comply with local laws and utilize it in a responsible manner. The developers do not assume any responsibility for potential misuse by users.

    Citation

    If you find Face-Adapter useful for your research and applications, please cite using this BibTeX:

    @article{han2024face,
      title={Face Adapter for Pre-Trained Diffusion Models with Fine-Grained ID and Attribute Control},
      author={Han, Yue and Zhu, Junwei and He, Keke and Chen, Xu and Ge, Yanhao and Li, Wei and Li, Xiangtai and Zhang, Jiangning and Wang, Chengjie and Liu, Yong},
      journal={arXiv preprint arXiv:2405.12970},
      year={2024}
    }

    About

    No description, website, or topics provided.

    Resources

    Stars

    Watchers

    Forks

    Releases

    No releases published

    Packages

    No packages published

    Contributors 2

    •  
    •  

    Languages

    主站蜘蛛池模板: 无码AⅤ精品一区二区三区| 全国精品一区二区在线观看| 在线不卡一区二区三区日韩| 国模无码人体一区二区| 在线免费视频一区二区| 亚洲一区免费视频| 日本一区二区在线| 爆乳熟妇一区二区三区| 国产一区二区三区免费看| 国产成人一区二区三区| 国模私拍福利一区二区| 国产精品夜色一区二区三区 | 亚洲色欲一区二区三区在线观看| 99国产精品欧美一区二区三区| 无码人妻一区二区三区一| 亚洲综合国产一区二区三区| 久久精品国产亚洲一区二区三区| 欧洲精品一区二区三区在线观看| 天天躁日日躁狠狠躁一区| 精品国产区一区二区三区在线观看| 中文字幕精品一区二区| 亚洲中文字幕一区精品自拍| 交换国产精品视频一区| 亚洲欧美国产国产综合一区| 亚洲av无码一区二区三区天堂| 无码国产精品一区二区免费| 亚洲一区二区三区亚瑟| 亚洲一区AV无码少妇电影| 亚洲av色香蕉一区二区三区蜜桃| 无码少妇一区二区浪潮免费| 在线观看一区二区三区视频| 精品视频一区二区观看| 亚洲视频一区二区| 三上悠亚一区二区观看| 国产成人一区二区三区在线观看| 夜色福利一区二区三区| 亚洲AV无码一区二区三区牲色| 国产aⅴ精品一区二区三区久久| 人成精品视频三区二区一区 | 亚洲AV无码一区二区乱子伦| 久久se精品一区二区国产|