Skip to content

    FaceAdapter/Face-Adapter

    Repository files navigation

    Face Adapter for Pre-Trained Diffusion Models with Fine-Grained ID and Attribute Control

    arXiv GitHub

    Introduction

    Face-Adapter is an efficient and effective face editing adapter for pre-trained diffusion models, specifically targeting face reenactment and swapping tasks.

    Release

    • [2024/5/25] ?? We release the gradio demo.
    • [2024/5/24] ?? We release the code and models.

    Installation

    # Torch >= 2.0 recommended for acceleration without xformers
    pip install accelerate diffusers==0.26.0 insightface onnxruntime
    
    

    Download Models

    You can download models of FaceAdapter directly from here or download using python script:

    # Download all files 
    from huggingface_hub import snapshot_download
    snapshot_download(repo_id="FaceAdapter/FaceAdapter", local_dir="./checkpoints")
    
    # If you want to download one specific file
    from huggingface_hub import hf_hub_download
    hf_hub_download(repo_id="FaceAdapter/FaceAdapter", filename="controlnet/config.json", local_dir="./checkpoints")

    To run the demo, you should also download the pre-trained SD models below:

    ? Quick Inference

    SD_1.5

    python infer.py 

    You can adjust the cropping size with the --crop_ratio (default:0.81)parameter. But be careful not to set the crop range too large, as this can decrease the quality of the generated images due to the limit of the training data size.

    ?? FaceAdapter can be seamlessly plugged into community models:

    python infer.py --base_model "frankjoshua/toonyou_beta6"

    Disclaimer

    This project strives to positively impact the domain of AI-driven image generation. Users are granted the freedom to create images using this tool, but they are expected to comply with local laws and utilize it in a responsible manner. The developers do not assume any responsibility for potential misuse by users.

    Citation

    If you find Face-Adapter useful for your research and applications, please cite using this BibTeX:

    @article{han2024face,
      title={Face Adapter for Pre-Trained Diffusion Models with Fine-Grained ID and Attribute Control},
      author={Han, Yue and Zhu, Junwei and He, Keke and Chen, Xu and Ge, Yanhao and Li, Wei and Li, Xiangtai and Zhang, Jiangning and Wang, Chengjie and Liu, Yong},
      journal={arXiv preprint arXiv:2405.12970},
      year={2024}
    }

    About

    No description, website, or topics provided.

    Resources

    Stars

    Watchers

    Forks

    Releases

    No releases published

    Packages

    No packages published

    Languages

    主站蜘蛛池模板: 久久无码AV一区二区三区| 国产综合视频在线观看一区| 精品国产一区二区三区无码| 精品视频在线观看一区二区 | 午夜精品一区二区三区在线视| 亚洲制服中文字幕第一区| 精品乱子伦一区二区三区| 在线视频国产一区| 波多野结衣AV一区二区三区中文| 久久精品道一区二区三区| 久久国产精品一区| 一区五十路在线中出| 国产无人区一区二区三区| 制服丝袜一区在线| 中文字幕一区二区精品区| 日韩人妻一区二区三区免费 | 国产精品高清一区二区三区不卡| 亚洲一区精品无码| 日韩精品在线一区二区| 国产日韩一区二区三区在线观看 | 蜜桃无码一区二区三区| 国产一区二区电影| 无码国产精成人午夜视频一区二区| 中文字幕在线观看一区二区| 91福利国产在线观看一区二区| 国产人妖视频一区二区破除| 国产一区二区三区亚洲综合| 一区二区三区AV高清免费波多| 精品女同一区二区| 精品成人av一区二区三区| 中文字幕永久一区二区三区在线观看| 日本免费精品一区二区三区| 国产午夜毛片一区二区三区| 国产亚洲一区二区三区在线不卡 | 在线免费一区二区| 精品视频一区二区| 日本精品高清一区二区| 国产成人无码一区二区三区 | 国产精品一区二区三区久久| 无码精品蜜桃一区二区三区WW| 精品人妻一区二区三区毛片|